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If I isaIzeroIf LQ), hen........).

If P is a zero of ( then L k() are functions whose replace-

ment by j (-) in (2) maps L(\) into L(Q), •(Gav) is a function defined by

an equality of form (3) with replacement of 7 by k P(z) is a

polynomial defined by the equality

cv

where C is a circle containing the single zero •. of the function L(-.);

P(z) = P (z) for t = . The main result of the paper is that a certain

functional equation whose left side is a finite sum of Stieltjes integrals

can be reduced to a simpler functional equation whose left side is a single

Riemann integral. Theorems 5, 6, 7 are devoted to the summability of the

series "I P (z)e•' and of its derivatives with respect to ,(z) and its

derivatives.
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ON THE TRANSFORmIATION OF A FUNCTIONAL EQUATION TO SIMPLER FORM*

by

A. F. Leont'ev

Studied in the work of Delsarte, Schwartz, Kahane et al. (in this

regard see A.1) were functions f(z), defined and continuous on the whole imaginary

axis and satisfying on this axis the equation

f (Z(1)V'IT 0
a

Here -a,b- is - certain segment of the imaginary axis, 7(F) is a function of

bounded variation on [a,bI. The functions f(z) satisfying Eq. (1) are called

periodic in the mean. Studied in [17 were continuous solutions of Eq. (1) defined

not on the whole axis, but only on a certain interval (al, b1 ) [a,b].

In the present paper we consider the more general equation

f 1h f') _t-F ý)doa(k 0 , (2)

h=0 a

where [a,b, is a segment of the imaginary axis, ( (k 0,1,...,n) are functions

of bounded variation on La,bj. It is assumed that the function f(z) is defined

and has continuous derivatives up to and including the order n on a certain

interval (a Ib I) [a,b_-. The class of such functions is denoted by Cn(a 1 ,b 1 ).

A particular case of Eq. (2) is a differential-difference equation with constant

coefficients. An extensive literature is devoted to differential-difference

Translated from Mat. Sbornik [math. Symposium], Vol. 67(109), No. 4,

pp. 541-560 (1965).



the function

F (W : f(z) -- P• , '(z) e '"

in this same interval satisfies the equation

hF [ ( z • -• • d E •= 0 .

Valid also is the assertion that if the function F(z) C n(albl) satisfies Eq. 3,

then this function also satisfies Eq. (2).

Eq. (3) is an equation of form (1); it is even simpler than Eq. (1).

Because of the result mentioned above, the solutions of Eq. (2) will have the v.erv

-ame properties as the solutions of Eq. (1). Several of these properties 11re

mentioned in the paper for an example.

1. Auxiliary Assumptions

For what follows we shall need:

Lemma 1. Let the function L(4) have the form

k=0 a
where [ia,b] is the same segment of the imaginary axis, and k(-) (k = 0,1,...,n)

are functions of bounded variation on -a,b]. Furthermore, let - be some zero

of the function L(".). Then the function
L(X) =L(X)•

has the same form as the furction L(-), that is,

k=0 a

where jk(.) (k - 0,1,...,n) are functions of bounded variation on ia,b

Proof. Let us represent L() in the form
n b

h-,o a

and let us set

VA(k) el te deak(•) (k 0, 1. . n.

a
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equations. This can be found, e.g., in the book by E. Pinney [2] and the survey

article bv A. M. Zverkin, G.A. Kamenskii, S.B. Norkin and L.E. El'sgolts [3].

Also given in the latter are papers in which equations of type (2) are studied.

It is shown in the present paper that Eq. (2) can be reduced to Eq. (1).

Let us formulate the result in greater detail. Let the characteristic

fu1c t i on

LQ (70 Xk e~tdak(~
k=0 .4

not be identically equal to zero and have infinitely many zeros. Let 2,...

be various zeros of the function L(',), and let ml,m 2 . ... be their multiplicities.

We shall assLume (and this does not cause a loss in generality of the

reasoning) that 'a,b* contains the origin strictly within itself. Let

1~i 1)df) o fI [d ( i - ) el"Idin dak I)

We associate the functions f(z) C n(al,bl) with the series

f (z) -- P .(z) e•'12,

where

P, (z) e (i e
2ni L L(i)

Cv

and C is a circle with center at the point within which there are no zeros

of the function L(.) that are different from )•. We introduce the function

L (it)
(@ ) ( - %,)", .. (- fu '

where 0 n •m(v = 1,2,...,s). Let us select whole numbers r. such that the

condition n + ... + n - n + 2 is fulfilled. Under this condition the function
1 s

K(.) can be represented in the form b

where (-) is continuous on [a,bj. It is shown in the present article that if

the function f(z) -- Cn(al,bI) saLisfies Eq. (2) in the interval (aI - a, bI -b),

-2-



the function

F (z) (z) - , P, (z) e•Z

V=1

in this same interval satisfies the equation
h

SF (z + ý) q) (ý) dt = 0.
(3)

Valid also is the assertion that if the function F(z) Cn(a1 ,b satisfies Eq. 3,

then this function also satisfies Eq. (2).

Eq. (3) is an equation of form (1); it is even simpler than Eq. (1).

Because of the result mentioned above, the solutions of Eq. (2) will have the very

same properties as the solutions of Eq. (1). Several of these properties drc

mentioned in the paper for an example.

1. Auxiliary Assumptions

For what follows we shall need:

Lemma 1. Let the function L(k) have the form
n h

°(e) e4 (1)

where [a,b] is the same segment of the imaginary axis, and (k 0,1,...,n)

are functions of bounded variation on La,bj. Furthermore, let be some zero

of the function L('%). Then the function

L ) = L(X--4--0

has the same form as the function L(-), that is,

L(k) = I X ý ex dok(), (2)
k=O a

where 7k(!) (k = 0,1,...,n) are functions of bounded variation on La,b-.

Proof. Let us represent L(') in the form

A-a a (3)

and let us set

V, (M) elt da'A(,) (k == 0, I1 ...,)

a

-3-



It is obvious that

V, (a) = 0. (4)

Applying the method of integration by parts to the integrals on the right-hand

side of relation (3) and taking equality (4) into account, we get

) X [V, (b) e'_X0 )b_( 3 e(x-A VA (• ) d] (pk Vý (b)) e(-)b +
k=0 a k=0

+ ~ - )V., (b) e(%) - (X - P) X~ 5e~' 1  A x ~
k-o a

The first sum on the right-hand side of this equality equals zero, since it equals

L(-), and L(P) = 0. Therefore,

k=n k-O a

Using the expansion

~k k k-i -- X

and changing the order of summation, we get

--X) (X-." [e - Vk (b) . 4

- ý Vn( dý) (5)
a

Let

am V. (~dý a < <b

a 4n'f(bt

The functions k (k 0,1,...,n) are functions of bounded variation on La,bj.

By means of these functions representation (5) is written in the form

-4-



from which follows the desired representation (2). The lemma is proved.

Lemma 2. Let L(,) be an entire function of exponential type and let

",(?-) be a function Borel-associated with it, so that

L (X) T S (Z) e dý,
C

where C is a circle on and outside which the function Y(-) is regular. Further-

more, let : be some zero of the function L(',). Then the function

has the representation

L ' (X = .5 (t) e"' dE,
C

where

S(E) = -- eet r () dt, 0 E C.

In order to prove this lemma we write

L Jy= e" e(%-A dý.

c

After integrating by parts, setting

V(Z) - (6)
t0

we get

L,- -- )' Vg (E) e(--0 dI.2hti 2i (7)
C

The function V(-) is single-valued on the contour C, since the difference between

its value after going along the contour C and the value before doing this is

C er T (t) dt 2riL (,) 0.

C

,-herefore, the first term on the right-hand side of equality (7) equals zero and,

consequently,

2-T i V()~ dý (X-) L j r(E)e"' d,

which is what was required to be proved.

"-5-



Lemma 3. Let (z) be an arbitrary entire function. We set

In ($*a, i~ F ( -- • -- l)enAd q  T(1 )d1 ,

C n

where the functions '(f), v') and the contour C are the same as in lemma 2, and

a and are abritrary. Then there holds the equality

e:w (t i P(si+ U+ r(,)d•. (8)

c

Let us establish this equality. We have

C n

- ~T Sj ) e-" e`O dil] eo' y~ dý.

After integrating by parts and making use of notation (6), we get

L V I + i))e- e )ej- IC

1 ~(, VC|Ix- )-p-• I (oE -t- Tj)e(t-T')`dj e-AtV (ý) dt.

Included in the first bracketed expression is a function single-valued on the

contour C, since V(-) is a single-valued function. Therefore, the first term

on the right-Land side 3f the last equality equals zero and, consequently,

ele(I., t - - L (a + T)(-'4111 )d] +
C 0

c

Because

the first integral on the right-hand side equals e~ L (,,O,.). Hence, equality

(E) is indeed valid.

The functions * and T. (.A,:) are generated by the functions

.(". and L(") from lemma 2, respectively. Let us introduce the functions ,

-6-



which are generated by the functions L(O) and L(..) of lemma 1, and let

us set up a relation for them that is analogous to relation (8).

Lemma 4. We set

ai t

k : -0at! L
0 W [ ý V (a + j- - i)e"'d'n ia

where the functions k(r), •k(ý) are the same as in lemma 1. Let the segment

a,bh contain the origin rL4rously within itself and let the function .(z) be

defined and have contin,•us derivatives u to and including n order on a certain

interval (a 1 ,b 1 ) [a,b_. Then, for any and a - (a1  - a, b- b) there holds

the equality

ed t) (JA= 0, -jV~o~) + 5 pk( + )da()()
k_0 (9)

ý.z
We first verify equality (9) for the function .(z) = e , where is an

arbitrary number. For such a function

therefore,

e" I,, 1, 1.) . L ()- L W, ea' a, L= e" L (')- .)

Moreover, if .(z) e hen
h

From these equalities it follows that relation (9) for the function .(z) e:Z

is indeed valid.

imz
Let us examine the system e . It is complete in any vertical

strip of width less than -2-. Any function analytic in this strip can be approxi-

mated arbitrarily well by means of finite linear combinations of functions from

the indicated system. Consequently, relation (9) is valid for any analytic func-

tion from the strip; in particular, it is valid for polynomials. Let .(z) be an

"-7-



arbitrary function defined on the interval (albl) I Ca,b] and having continuous

derivatives of up to n order inclusive on this interval. We choose the segment

a2 b 2  such that La,b] [a 2 ,b 2 ] C (aC,bl). Let P(z) be a polynomial having

the property that

I1(PM(z)-kP(z) <E, z E[a, b21 (k = 0, 1,2, )... (10)

where > 0 is an arbitrary number. Such a polynomial exists. Since relation (9)

is valid for the polynomial P(z), we conclude on the basis of (10) that it will

also be valid for the function ,(z) when a. E (a 2 - a, b 2 - b). The lemma is proved.

Remark. Lemmas 2 and 3 make it possible to get equality (8) in a

natural and very simple manner; they are not used in the following. Equality (8),

however, suggested the idea of the existence of equality (9).

Lemma 5. Let 1(u,a,,V) be the function defined in lemma 4 and let LO)

be the function defined in lemma I If the function ;(z) is defined, has con-

tinuous derivatives of u to n order inclusive in the interval (al,bI) D [a,b],

and in the interval (a1 - a, b1 - b) satisfies the eguation

ý i ,'(z + E) 0,o*ll,
k=o a

then the value of the integral

w (IA' aUe'dr (P) (12)

where -' is any closed contour on which L(") )# 0, does not depend on CL, a (a, - a,

b - b).

We have

(,) ~ ~ ~ -' [ ýa• V, •) (4 + •-lep("-O) dil da•(,)

a E 0

~~$ [~ -te"' di]Ida
k=0 a --

on the basis of which

a~ 0 am-



m~n c u eu u nnn • u

S i nee

we find that
h

k

By virtue of condition (11), the second term on the right-hand side of this

equality equals zero; therefore,

fl-" -- •'( +-" L (IL).

Hence it follows that

()" '" <" ' " *' " dit JI - p) el 1"- 1 (ft• =o,
1V r

which is what was roeiiirord to be proved.

Lemma 6. If the value of integral (12), where " is any closed contour

on which L(.) - 0 does not depeend on a and the furnction L(.,) has at least on,

zero, the function (z) satisfies Eq. (11).

According to the cýrndicion and equality (13), we have

(__ 2' 1) &I 'dfA -i(7) ~L(~d~i.+
r•t L (It)

r

Co dat Q1pk d 0

The firsrtermi oqiails zero and the integral

S•dP
r

is not identically equal to zero for any z if as we take a circle of small

radius with center at tiit .- ro . of the function L(C). Therefore,

4 0a! ',ik)• - )do,,(•)- 0.

Lemma 7. Let - he a zero (of multiplicity m) of the function L(',) and

let .(z) = zPez, where 0 p m. Then the residue of the function

"-9-



(as a function of the variable p) equals ;(z) at the point u = and equals zero

at all the zeros of the function L(4) that are different from •.

Proof. In the proof of lemma 4 it was shown that

) , at, ez) = ea'%-') L (v')- L
1k-4

Hence,

(a 4L. (X, V) ee .-1 -(it)-L .)] (X = , i. (z) - z,,e')

or

L (p -�, L-,) C(
cXP V I

But

r L(p) L(k) ] L f ý L( Cj (k-j)I LO(___)
aX" 11k - XJ 3 L-•. -=, 1(1k_ " - c;, (, •)4 -I+, J.= -

kI L (p)

Therefore,

o (, = •)=: C•," (P-') L (ji) e=(-"
V-~ 6A - ),--+l

and consequently

e'z ("' e e( = (z_0). C~vo (p- v)t

V•=O 
(4

Hence, we conclude: at points • ; function (14) is regular and therefore its

residue at these points equals zero; at the point " = ý the residue equals the

coefficient c-1 for (" - 3) in the expansion of function (14) into a Laurent

series; in which case

C-1 = e•' Ca, (p - v)I (Z - )+"V a
- (p - v)t e

The lemma is proved.

-10-



"2. Main Results

Considered in this section are the functions :(z), defined and having

continuous derivatives of up to n order inclusive on the interval (al,b 1 ) -

a,b, of the imaginary axis and solving in the interval (a - a, b - b) the

equation

kn a

h=-o a

where k(-) (k = 0,1,....n) are functions of bounded variation on a,b.. We

assume that the origin lics rigorously within the segment La,b,.

The function

eda~(~*)(2)

is called a characteristic function corresponding to E ). We note that for

any

A L (X i eý-z. (3)

When L() - 0, Eq. (1), according to equality (3), has a solution .(z) = e ,

where -. is any number. Hence it follows that Eq. (1) is solved by any function

having continuous derivatives of up to and including n order on (alb l). In this

case Eq. (1) reduces essentially to an identity, and therefore this case is not

interest ing.

Let us examine the case when the function L(-) has no zeros at all.

Then, since L( U) is an exponential function, L('.) = Ae , where A and , are

constants, A 0 0. Since, as is evident from representation (2), the function 1,(.)

behaves on the real axis as O(' ,n), the number \ is purely imaginary. Further-

more, it is also evident from representation (2) that

on the imaginary axis for large I.. Therefore, the number 'h bklongs to tht.

segm(nt a,b,. According to equality (3) we have

-11-



At (ell-) - Aeyeu. (4)

We set M() A.(z + Y). On the basis of (4) we conclude that M(e ýZ) = ML(e 'z

for any k. Hence it follows that for any functions ,(z) having continuous

derivatives of up to n order on (al,b1), the following relation is valid:

MM = M (V) = A* (z + T).

Consequently, in this case Eq. (1) has only the trivial solution ý(z) - 0.

Now let the function L(\) have a finite number of zeros 2,......

whose multiplicities are equal respectively to mi,... ,Ms. We have

L (k) - P (k) e", P (7) = A (X- ,) ... (X- W), E [a, bl.
N

It is obvious that N - mI +...-4- ms n. Let PM avx. We set
N

All O) a, a,(•)z + T). As in the preceding case, it can be seen that the

equality M(.) = M (.) for the functions .(z) being considered. The solution of

Eq.(1) reduces to the solution of the equation MI(j) = 0. The general solution

of the latter has the form

1 (Z) : ,pV (Z) e•'

where P (z) is an arbitrary polynomial of degree less than ,v.

These cases are not of great interest. Let us now go on to the case

when L(-.) ý 0 and L(".) has infinitely many zeros. Let ).,,i'2 .... I'k. 'k.. be various

zeros of the function L(.) and let ml,m 2 ,... ,m k,..., resp., be their multipli-

cities.

We associate with the solution (z) of Eq.(1) the series

•p()~•P, (1) ",( 5 )

where
P, (z eIv 0' ej. di)

2i L ( 1A)L
-v

-12-



Here C is a circle with center at the point , within which thert- ar" no oCrW,

of the function L(.,) that are different from and

oJ

It is obvious that P (z) is a polynomial of degree less than m According to

lemma 5 the polynomial P (z) does not depend on the parameter

We note that for a function .(z) of the form

N
p(z) - P , (z) e'", (6)

where P (z) is an arbitrary polynomial of degree less than m, series (5) coin-

cides with the finite sum (6) by virtue of lemma 7. This circumstance explains

why series (5) is chosen as the series corresponding to the solution of Eq.(1).

Let 0 be some zero of the function L(-) (p = for a certain J).

Along with Eq.(l) let us consider the equation

v k (Z ' d~ i- ak(~0 7
k 

7)

whose characteristic function

ii -13
•.Z

is defined in lemma i. If z = the term P (z)e of series (5) corresponding

to this zero z will be denoted by P(z)e

Theorem I. Let (z) be a solution of .). Then the foct ion

f (z) ip () -- P[ Z) C"' (8)

is the solution of Eq.(7). Moreover, there holds the equality

6&,'2 ) 01, f

L QOI. (i')

where the function .(, ,f) was introduced in lemma 4 and is constructed by means

o' the function L(-) in the same w as the function (.(,,,f) is constructed by

means of L(-).

-13-



In order to prove the theorem, we note first that by lemma 7

2i L " (_•)elz dýt = 4F (z), ip(z) ý P (z) e•z,
2ti .] L (•t)

C

where C is a circle with center at the point P, within which there are no other

zeros of the function L(") except the point 0. On this basis, since f = -

we have
1 ( , e d 2i (S (e.ll, ,) - (I a,,( , (F) eg-zdt& =O.

2--ti L (j) 2Mi L (p) 2W L ti

Hence we conclude that the point • is, for the entire function u(t,CL,f), a zero

of multiplicity equal at least to m, where m is the multiplicity of the zero

= • of the function L(.). By virtue of lemma 4 there holds the relation

n b

k-o a

aE(a,--a, b,--b). (10)

If here we set i =, we get

SI"'(a + ý) d3ýt 0• , a E (a, - a, b,- .(1)
k=O 4

Consequently, the function f(z) actually satisfies Eq.(7). On the basis of (11)

the equality (10) takes the form

a)". (fL. o, f) - (jA -- 3) e=" NO(f -a, f)

from which follows relation (9). The theorem is proved.

Theorem 2. If the function v(z) satisfies E , then it also satisfies

Eq.(1).

Proof. We make use of lemma 4, according to which

A-c a

o E (a-a, b, -- b).

By the condition of the theorem the second term on the right-hand side of this

equality equals zero; therefore, V) = __64_a,_V)

L -1 )

-14-



and
0' - v)" A ý A f ep d•.L,L (I)•I)(12)

r r

where - is any closed contour on which L(U) / 0. According to lemma 5, since the

function j(z) satisfies Eq.(7), the right-hand side of relation (12) does not depend

on a. Consequently, the left-hand side of this relation also does not depend on a.

Then, by lemma 6 the function i(z) satisfies Eq.(l), which is what had to be proved.

The function (•,a,.), constructed by means of the function L(ý), will

be denoted by iL(,,,.). In the new notation the function (,a,.) is ,

The left side of the equation

V k)( --r ý) da(F ) 0,
k-n a

for which the characteristic function is

n bL (?)= Y, kk e" edar[)

k=o a

will be denoted by ML(.) = ML[..(z)].

In the proof of theorem 1 it was shown that the point P for the function

i(jz,f) is a zero of multiplicity not less than m. From relation (9) we conclude

that this point is a zero of the function j(",OL,f), whose multiplicity is not

less than m - 1. Let m ,I. We set
L2(0 L (p) L, (IX)

L (• .. . . LI (p) = L(')

according to lemma 4

e*a ,, (4L, a. f) = (L-- f))e'1 ,,(g, +, f)- All., if (a)), aE(a1 -- a, b,--b).

Setting here = ., we find that M L2[f(f)] = 0 and

L2i
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The point ý for !L2(,.La,f) will be a zero whose multiplicity is not less than

m - 2. If m - 2, the indicated process can be continued. As a result, we reach

the conclusion that the function f(z) = ,(z) - P(z)e z satisfies the equation

M Lk(f) = 0 and that the following relation is valid:
""L- (t =, I) _ " • (it. =,' f ix , 0• *;m

LLk ) (i;) ,)O<lk-<m. (13)

We note that on the basis of relation (13) the series f(z)-E'p,(z)ek1'

corresponds to the function f(z) as the solution of the equation L k(f) = 0; this

Pz
series differs from series (5) only in that the tern P(z)e , corresponding in

series (5) to the zero , of the function L(."), is absent in it.

The above reasoning has made it possible to go from an equation with

a characteristic function L(C) to an equation with a characteristic function

L k( ). If Y ('y - P) is a zero (of multiplicity p) of the function Lk (), it is

possible to go over in a similar way from an equation with a characteristic

function Lk (-,) to an equation with a characteristic function

Lk (it)
O<q < p.

(it -- -r0q

To sum up, we can formulate the following theorem.

Theorem 3. Let .(z) be the solution of Eq.(1) to wh -h the series (5)

corresponds. Then the function

F (z) -- ;(z) -- P,P (z) e""',

V-1

is the solution of the equation

AIKIF(z)] 0, z .(a,-a, b,-b) (14)

with the characteristic function

K)) ,. O<nm, (15)

and

L (it, a, F) '_ ) K (1, a, F)
--. oc(a,-- a, b,-- b). (16)L (it) K (i- )

-16-



By successive -iiplication of theorem 2 it is possible to conclude thnt

if F(z) is a solution of 1. (14), then F(z) will also be a solution of the ori-

ginal equation (I).

We note that by virtue of lemma (1) the function K(C) has the form

^"~ ~ t e, = '"! t da" a),
k-o Za

wherv ok(7) are functions of bounded variation on the segment la,b_, and the

numner n is here the same as in formula (1). In conformity with this,

n h,. I (F) F ] IP • (z -- ,)d,,(y ).
•.•a (17)

Let us assume that the function F(z) has continuous derivatives of up to and

including n order on the interval (al,b 1 ) I [a,b]. The class of such functions

will be denoted by Cn(alb ).

Lot us find a simpler representation for the operator (17).

For large t the function L(-) varies on the real axis as O( n

In representation (15) we choose s and nl,...,Ins under the condition:

nI + ... + ns = n + 2, Then the function K(.-) will vary on the real axis as

O(i. "2). On the imaginary axis, for large >4 we have

l^'m~~o~ip-')e~l•"l [lm < 0.

Let the segment La,b 4 contain the origin so that Im a 0 Im b. Let

\(t) be a function that is Borel-associated with the function K(,,). We have

T iM =i"Kp e-111 dpt,
((e) (18)

A "2.'-ti (t) e dt, (19)

c

where C is a closed contour encompassing all the singularities of the function

Y(t). If in integral (18) we choose the positive real semi-axis as the path of
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integration, then, taking into account the above-mentioned behavior of K(,) on

this semi-axis we find that tie function > (t) is regular in the half-plane

Rt(t) - 0 and is continuous in the closed half-plane Re (t) 0. Analogously,

we see that )(t) is regular in the half-plane Re (t) - 0 and is continuous in

the closed half-plane Re (t) 0 0. If as the path of integration in integral (18)

we first choose the upper part of the imaginary axis, and then the lower part,

we find that the function \(t) is regular in the half-plane Im (t) > jbj and

i• (t) -•a; and is continuous in the closed half-planes. Keeping this in

-ind, from (19) we get

K (ja) = t ( e,
a (20)

1

where +() = • "y(= + 0) - N(• - )j, and y(• + 0) is the limit of the

function -,(t) as the point t tends to the right to the point - of the segment

"a,b., and 0( - 0) is the limit of the function Y(t) as the point t tends to the

left to the point -. The function -.(7) is continuous on the segment [a,b] and

equals zero on the imaginary axis outside this segment. We note that the function

(-) is not everywhere equal to zero on La,b], because if it were, the function K("),

and consequently also the function L(C), would be identically equal to zero, which

contradicts our condition. We set

AIF) (P (D)F(z -+ -) ý, F(z) EC"(a,, b1).

The equality A(F) = ,1K(F) is fulfilled for the function F(z) = e with arbitrary

Hence it follows that the latter equality also holds for arbitrary functions

F(z) from the class C n(a 1 ,b 1 ). Thus,
b

AI. (F) - p (a) F (z - ) dý, F (z) Cn (a,, j().

This makes it possible to formulate the following theorem on the basis of theorem 3.

Theorem 4. Let .(z) be the solution of Eq.(l) to which series (5) corres-
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ponds. Then the function

\V 1

where s is chosen such that t .e condition m 1 + m . s - n + 2 is fulfilled,

satisfies Eq.(21). Conversely, if the function F(z) ý_ Cn(al,bl) satisfies Eq.(21),

it also satisfies Eq.(1).

Theorem 4 permits reduction of the question as to the solution of Eq.(l)

to the question of the solution of the simpler equation (21).

Eq.(21) was studied in detail in [1j. Let us give some of the results

from this paper. Let [aeb - -[a,b- be the least segment outside which the

function :(•) in representation (21) equals zero. Without loss of generality of

the reasoning, it can be assumed that it is symmetrical relative to the origin, so

that a = -qi, b2 = qi, q 0 0. If we set )- &')d•, then Eq.(21) can
-qi

be represented in the form

AIK(F)= F(z + E•)a( 0, (21')
-- qt

and the characteristic function (20) in the form

K () = ell da().

The function K4-) has the following properties:

1) for almost all ' C [0,27.] there exists

lir In I K (re~l') I sinq(I; (22)

2) there exists a sequence of numbers ok > 0 (k T ) and a number

p p 0 such that

1njK~rr")j>(qjsin'pj-e)r. pkA-p<r<pk+-p, k>N(e), (23)

where E -- 0 is any number.

Let ý > 0 be a sufficiently small number such that on the rays
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arg + + . and arg . = -(- + P) relation (22) is fulfilled. We assume that the

function F(z) is continuous on the interval (a 1 ,bI) [-qi,qi] and satisfies

Eq.(21) for z -- (a + qi, bI qi). Let .. (V = 1,2,...) be various zeros of the

function K(-). The series

F (z) \1 Q, (z) e1 ,'v,
),,V (24)

where

Q,. (Z) eh)' I < (K 61 F) e2 dt.
2 K 0) e

corresponds to the function F(z). Here C is a circle with center at the point

within which there are no zeros of the function K(-) that are different from

and the function ,K(.,",a,F) is determined by the formula

,oK (It, ot, F) - e-214 F. ) el.• l dT1i dc(•)..iL (25)

If F(z) C n(al,bI), the function (25) coincides with the previously introduced

function !K (.,L,F). This follows from the fact that, as is easy to verify, these

functions are equal for functions of the form F(z) = e with any -. Let A and

6 be fixed positive numbers. By D we denote a rectangle -A < x < 0, Im a1 +

6: - Im b - and by D2 a rectangle 0 < x < A, Im a1 + ; < y Im b -

We subject the previously introduced number ' to the condition: sin -
2A

We let S' denote the region lying to the left of the contour r formed by the

rays arg + ( ), and S' the remaining region of the plane. It is shown

in lj that there exist limits

F, (z), - lim Q, (z) e•''. z E D2,
I Itv I <O. Jv'ES'

F, = ) lir Qv(z)e"v2, zED 1 , (27)
IU1. 

AvES"

the convergence within these regions being uniform. It is proved that uniformly
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for all y (Im a1  + y bi b, - )

lin IF, •Z) F i2 )( I F (i!) (z x + jy, z - x - iy). (28)

This relation can be considered as the method of Abel for the summation

of the generally diverging series (24). Let the function F(z) have a continuous

derivative F'(z) on (a 1 ,bI). Let us verify that a series whose terms are deri-

vatives of the terms of series (24) corresponds to the function F' (z). By virtue

of (25) we have

q1 0

Since

S F' (o - I - el l"i - F (a) eW+F + F -) -,- F (a + -- ,e)• dn,
0 0

we find that

--qi "

Si F(a- )de(g) - 5 [- F (a + Z-- q)ell" digj dc'().
-qi -qi 0

The middle term on the right side of this equality equals zero. Therefore,

P), (,• i f. F') e,) e P,, d. '

K.x e 2nd. K (it) e'4-CV CV

d F K (. a, F)dIL JQv (z)e"
dz -ui K (it) dz

Cv

which had to be proved. Hence it follows that relations of the form (26),(27) and

(28) will also be valid for the derivative F'(z). Taking this and thecrem 4 into

account, we formulate the following theorem.

Theorem 5. Let the function -(z) from the class Cn(a,bl satisfy Eq.(l)

for z , (aI - a, b- b) and let series (5) correspond to the function (z). Then,

V [M) (iY) = lira W + V12"•)], iy E (a,, b,) (m = 0- 1. n), (29)X-,0
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where

kurn k .:4,) (n -00 1 ~ ~ (n

xvES' ;yvES.

and z = x - iy, z = -x + iy, x -0. In relation (29) the convergence is uniform

for iv , -(alb)

As corollaries of theorem 5 we note the following propositions:

1) if .(z) = 0 on the segment La,b], then (z) = 0 everywhere on (a,,b1);

2) the solution (z) in any segment L2,•J - (al,bl) can be approxima'ted

as well as desired by means of linear finite combinations of functions from the

system
z-•e'• (s= 0, 1 . .. Mv--l; V ý 1, 2. .. )

to be more precise, for any > 0 there is found an aggregate

N m'n\-1

V-1 8=0

satisfying the condition

I '•(z -- •)(z) < e. z t=, •1 (r 0, 1,. .. n).

in *1. the following formula was established for the solution (24) of

Eq.(2l): F (z)-- I QV (z)-e"Vz

I Jtv I <P
•,1

= 2• •t' (. 'L F ("-+ ~ . • daa dR,

where s is any number for which there exists a bounded piecewise continuous deri-

vative F(S) (z). Hence

n) (z)-- ] [IQ. (z) el'J '4) -
I < 0

= -= t_ b " F "'(E-- i+ z)eP"d•j do(O dR.
2ni PI*K (W*ZiIS - (30)
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Let the condition

AK (it) > A ia-P ' . 0 arg.p. (31)

be fulfilled on a certain system of circles n = . ). kUnder this

condition, as shown in I_ for z from the segment , (a + qi, b- qi)

and K, = zk there holds the estimate

F( (t - -q- z) endq p"p , k>.,V(e),
SK (ILl

where E 0 is any number. Because of this fact, we find according to relati(ons

(30) and (31)

F") I I Q, (z /, I

0, P(32)

We note that the function K(.,) has the form (15), where the numbers ni .. n

can be chosen such that n + . + n = n + 2. Condition (31) will be fulfilleo

for p = n - r + 2 if

ILIjip l0l=,iea "r . 0 argIt, IU l It p. Pk O. (33)

Taking inequality (32) into account and considering theorem 4, we get the

following statement.

Theorem 6. Let the function .(z) have no fewer than s (s n) deriva-

tives on the interval (alb 1); in this case, if s - n, then s - I first derivatives

are continuous, and the derivative (S)(z) is bounded piecewise-continuous. Let

.(z) satisfy Eq.(l) in the interval (a - a, b b) and let series (5) correspond

to the function .(z). If condition (33) is fulfilled, then

V'IM, I IP, e'"lI . A z •- (a, -.-qi, h,- qi).
I •,, I "

In conclusion let us give one more theorem, which was established in El.

for the solutions of Eq.(21); by virtue of theorem 4, it will also be valid for

the solutions of Eq.(1).
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Theorem 7. Let the function .(z) satisfy Eq.(I) on the whole axis

and let series (5) correspond to the function ',(z). If the function ;(z) is

regular on the segment [a,bZ, then a certain subsequence of partial sums of series (5)

'V P ,, ( z ) e " I'' ( k ý- 1 , 2 , . )

converges uniformly within a certain strip

-- <c .xRe(z),<x 2. < -, x,<O<xz, (34)

moreover, it converges to the function :(z); consequently, the function -(z) is

analvtic in the strip (34).
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